If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+8t+450=0
a = -4.9; b = 8; c = +450;
Δ = b2-4ac
Δ = 82-4·(-4.9)·450
Δ = 8884
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8884}=\sqrt{4*2221}=\sqrt{4}*\sqrt{2221}=2\sqrt{2221}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{2221}}{2*-4.9}=\frac{-8-2\sqrt{2221}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{2221}}{2*-4.9}=\frac{-8+2\sqrt{2221}}{-9.8} $
| Y-4=-2(x5) | | 100+20c=1,140 | | 3d-3.4=2.2 | | -34+4x=7(5x+4) | | 5x+87=10x+17 | | V-7=6v-2 | | 6y+2=-3y-7 | | (X^2)y=4 | | 45y+43=25y+6 | | X^2*y=4 | | 4=5k-3k | | (2y/700)*700=0 | | 4(y+3)-7=5 | | 15x-7=-68 | | 0=5d+10d | | -1/8=x/2 | | 2r^2+3r+9=5 | | 2x+-12=x-6 | | n—21/2=71/2 | | 4y+5=47-8 | | n–21/2=71/2 | | 9x-25=16x+5 | | 4n-8/8=5 | | 1/8=126x | | 5^(-2x+1)-(1/25)^x=x^2*25^x | | 5/6x=50/21 | | -3x2=27 | | 14x^2-3x+2=9x^2-11x+6 | | 2/8=3x | | 12c+17=-19 | | 15+16x=150-8x | | m2+12m+2=11 |